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A   SECOND   REPORT    ON   DEFORMATION   MECHANICS   MAPS 

By 

H.   J.   Frost and M.   F.  Ashby* 

Division of Engineering and Applied Physics 

Harvard University,   Cambridge,  Massachusetts 

ABSTRACT 

A crystalline solid can deform plastically in a number of ways. 

Deformation mechanism diagrams can be constructed which show the 

fields of stress and temperature in which a given mechanism is dominant 

and the strain-rate that it yields.    This second report presents detailed 

maps for five pure f. c. c.   metals (Ni,   Cu,  Ag,  Al and Pb),   six pure b. c. c. 

metals (V,   Cr,   Nb,   Mo,   Ta and W) and a recrystallized Ni -  1 vol% Th02 

alloy,   which are based on direct comparison to available experimental 

data.   It also present further discussion of the various deformation 

mechanisms,  ■with refinements of their rate equations. 

Various applications of the diagrams are illustrated.    They provide 

a convenient means for the normalized comparison of the behavior of 

different metals.     They also demonstrate the effects of various changes 

in materials in a manner useful for qualitative engineering design. 

*University Engineering Laboratories,   The University of Cambridge, 
Cambridge,  England 
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A SECOND REPORT ON DEFORMATION MECHANISM MAPS 

I.  INTRODUCTION 

Plastic flow is a kinetic process.  Although it is often convenient 

to think of a solid as having a well defined yield stress, below which it 

does not flow, this is inaccurate.  Above absolute zero, any stress will 

cause a polycrystalline solid to flow — although the rate  at which it 

does so may be indetectably small on the time scale of a laboratory exper- 

iment or an engineering application. This rate depends on the meahaniema 

of flow.    A polycrystal may deform plastically by one, or a combination 

of, the following atomiBtio processes:  defect-less shear of atom layers, 

dislocation glide, dislocation climb, diffusive flow of individual atoms, 

displacement of grains by grain boundary sliding, and mechanical twinning. 

It is the kinetics of these processes that determine the rate of flow. 

Although these are the only atomistic processes available, it is 

more convenient to describe the plastic behavior in terms of mechanisms 

which describe the different manners in which the atomistic processes 

may operate. We therefore consider the following deformation meohanisma, 

divided into five groups: 

1) Defect-less ftou  (flow when the ideal shear strength is exceeded). 

2) Flow by dialocation glide alone. 

a) Limited by a lattice resistance (Peierls stress). 

b) Limited by discrete obstacles. 

c) Limited by phonon or other drag. 
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3) Twinning. 

A) Flow involving dialooation climb. 

a) Glide plus lattice-diffusion controlled climb 
("High temperature creep") 

b) Glide plus core-diffusion controlled climb 
("Low temperature creep") 

c) Harper-Dorn creep. 

d) Power-law breakdown. 

5) Diffusional flow  (involving the motion of single ions only). 

a) Lattice-diffusion controlled flow (Nabarro-Herring creep). 

b) Grain-boundary-diffusion controlled flow (Coble creep). 

c) Interface-reaction controlled diffusional flow. 

Certain other meahanima  (e.g. superplastic flow) may exist, but are 

insufficiently well understood to include them in the calculations presented 

below.  Equally important are a number of coupled mechanisms   (e.g. grain 

boundary sliding accommodated by dislocation creep). 

For each mechanism a rate-equation  exists.  In its simplest form, 

this is an equation linking shear-strain rate (y) to the shear stress (a), 

temperature (T) and to structure: 

0        . 

Y = y (o, T, structure) 

or, more generally 

e  = e(o..f T, structure) 

(where e  is the strain rate tensor, and a  the stress tensor),  "Struc- 

ture" includes all the internal characteristics of the deforming polycrystal; 
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first, its atomic structure:  the crystal class and type of bonding; 

and second, its defect structure:  grain size, solute or precipitate 

concentration, dislocation density and arrangement, and so on.  In 

more complete form, the rate-equation mechanism may be described by a 

set of coupled differential equations that explicitly consider the time 

dependent changes in a number of structural parameters, S., S-, S,, etc: 

^ij " f(aij' "^ V V S3 • • ^ 

dSl = fl(ffir T» Sl' S2' S3 •   •   ^ (2> 

dS2 - 
f (O^j. T. s

r   s2» s3 • • -^t 

where dt is an increment of time. 

In order to conveniently present the relation between y,  T and a in 

three dimensions, it is necessary to make certain assumptions about the 

internal structure.  Two formulations may be used to simplify the Internal 

structure dependence.  The first assumes steady-etate  flow.  In this case 

the internal variables of dislocation density and arrangement no longer 

appear explicitly in the rate-equations because they are uniquely determined 

by the external variables of stress and temperature.  This is the condition 

that 0 « dS1 = dS. » dS  etc., and it implies that we can solve for S , S-, 

etc. in terms of o and T.  The second formulation assumes aonetant internal 

structure, particularly dislocation structure. This case can be used to 
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represent the strain-rate and temperature dependence of the flow stress 

for a given initial internal structure.  It requires that the parameters 

S,, S., S  . . . be known or specified.  High temperature deformation 

is usually described by the steady-state formulation.  Low temperature 

deformation is commonly characterized by constant structure yield stress. 

In fact, a steady-state deformation is rarely measured at low temperatures 

because of work-hardening effects.  We have attempted to use the steady- 

state formulation as far as possible, but have been forced to use a con- 

stant structure formulation for the dislocation glide mechanisms which 

dominate at low temperatures:  the equation describes the yield stress 

at a given structure, not the steady-state flow stress. 

This rather complicated behavior can be presented on a map with 

axes of stress and temperature. The map is divided into fields which 

indicate regions of stress and temperature where each of the various 

mechanisms are dominant, as shown in Fig. 1 (maps for pure nickel of grain 

size Imm and lOym).  Superimposed on the fields are contours of constant 

strain-rate:  these show the net strain-rate (due to appropriate super- 

position of all the mechanisms) that a given combination of stress and 

temperature will produce. The map depicts the relationship between three 

variables:  stress, temperature, and strain-rate.  If any two of these 

variables are specified, the map can be used to determine the third. 

There are, of course, other methods of presenting this relationship. 

Fig. 2 is a plot for nickel (grain size = O.lram), showing various con- 
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TEMPERATURE  "C 

■200 0 200 HOC 600 800 1000 1200 1400 

,2       , .3 A .5 ,6 ,7 
HOMOLOGOUS   TEMPERATURE  T/TM 

TEMPERATURE, ?C 
200 400 600 800 1000 1200 1400 

.2 .5 ,4 .5 ,6 .7 
HOMOLOGOUS   TEMPERATURE   T/TM 

Fig. 1)  Deformation maps for pure nickel of grain size lOym and 1mm. 
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tours of constant temperature on axes of strain-rate versus normalized 

shear stress, showing the same mechanism fields. This type of plot is 

useful for comparisons to isothermal tests. A third type of plot showing 

various contours of constant stress (or constant normalized stress) on 

axes of strain-rate versus temperature (or reciprocal temperature) can 

be used for comparison to tests at constant stress. This third type is 

not shown in this paper. 

Such maps are constructed from the rate-equations.  In doing so, one 

has to make assumptions about the way in which the mechanisms superimpose. 

The simplest supposition is that the five classes of mechanisms operate 

independently so that the strain-rates produced by each add to give the 

total resultant strain-rate:  the dominant  mechanism is the one which con- 

tributes most to this total.  Although this is a gross oversimplification, 

it works surprisingly well — because at any given point on the diagram 

one mechanism usually dominates overwhelmingly.  Nevertheless, in con- 

structing the maps shown here, we have used a somewhat more sophisticated 

set of assumptions which we discuss in section 2. 

Once the rate-equations and method of superposition are specified, 

the maps can be constructed most easily by numerical computation.  This 

paper reports further progress in developing the maps, presenting them 

for five f.c.c. and six b.c.c. metals.  The principal differences between 
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thls and our first report (Ashby, 1972a) are: 

a) A change from tenaite strain-rate and stress to equivalent 

shear strain-rate and stress. The equivalent shear stress 

is defined as: 

vKv1'2 
where 

sij= aij - i 6ij0kk 

and the equivalent shear strain-rate as: 

,1/2 T   -  (2EijV 

These values are equal to the simple shear stress or strain- 

rate, and are related to the tensile stress, cr-i-i » and tensile 

strain-rate, e^., as 

°*'aif-' ^-^u- 

b)  The Introduction of new or improved rate-equations.  One of 

these appears as a field on all the maps shown here:  it is a 

core-diffusion controlled creep mechanism ("Low temperature 

creep"). 
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c) An Improved computational method. 

d) A much more thorough selection and optimization of the data 

used to construct the maps. 

In spite of these improvements, one must be careful not to attribute 

too much precision to the diagrams.  Although they are the best we can do 

at present, they are far from perfect or complete. Both the equations 

in the following eeationsj and the maps  constructed from them, must be 

regarded as a first approximation only. 

2.  RATE-EQUATIONS 

In this section we list, with a brief explanation, the equations used 

to construct the maps. These equations differ in detail from those of our 

earlier report. The approach we have used is to select an equation which 

is based on a physically sound microscopic model, or family of models. 

Frequently this leads to a rate-equation containing one or more coeffi- 

cients or exponents for which only bounds  are known; the model is too 

imprecise, or the family of models too broad, to predict exact values. 

Theory gives the form of the equation; we have to resort to experimental 

data to set the constants which enter it.  This approach of "model inspired 

phenomenology" is a powerful one In dealing with phenomena too complicated 

to model exactly.  In particular, an equation obtained in this way can be 

used to extrapolate outside the range for which data is available; a purely 
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emplrlcal equation cannot. 

In accordance with this approach we have set our accuracy alms In 

line with the general accuracy of experiments, which is generally about 

+ 10% for yield stress:  the error being somewhat greater for strain-rate 

at a given stress and temperature.  Thus, for example, we have not considered 

the temperature dependence of the atomic volume or Burgers' vector, but have 

considered the temperature dependence of the shear modulus. 

The symbols which appear In the rate-equations have the following 

meaning: 

Y      Shear strain-rate 

a,a      Shear stress 
s 

T Absolute temperature 

k Boltzmann's constant 

Q Atomic or molecular volume 

b Burgers' vector. 

T Absolute melting temperature 

y An appropriate, temperature dependent, shear modulus 

D      Lattice-diffusion coefficient 
v 

D      Grain-boundary diffusion coefficient 

D      Dislocatlon-core-diffusion coefficient 
c 

6 Thickness of the high-dlffuslvlty boundary path 

a Area of the high-diffusivity core path 

n A diraensionless constant 

A.,A„ Dlmenslonless constants for dislocation creep 

T       Ideal shear strength 
TH 
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T      Felerls stress at OeK 
P 

T      Flow stress for obstacle cutting in absence of thermal 
activation 

12 
Debye frequency (taken as 10  /sec) 

Constants with the dimensions of strain-rate 

Helmholtz free-energies of activation for kink-pair 
formation, and for obstacle cutting respectively 

Grain size 

Dislocation density 

Mobile dislocation density 

Dimensionless constants for dislocation glide 

Obstacle spacing 

Dimensionless constants for power-law breakdown 

2.1 Defect-less Flow 

The ideal ehear strength  defines a stress level above which flow of 

a defect-free crystal (or of one in which all defects are pinned) becomes 

catastrophic:  the structure becomes mechanically unstable.  Simple inter- 

atomic force models can be used to compute this onset of this instability 

(Tyson, 1966; Kelly, 1966) and hence the ideal strength at 0eK, which we 

call TTH.  Above 0
oK the problem is a kinetic one:  with what frequency 

do stable dislocation loops appear in an initially defect-free crystal? 

In this paper, we have not solved this kinetic problem;  the temperature 

dependence of the ideal shear strength is assumed to be the same as the 

V 

• 
YP •^0 

AFk ,AF 

d 

P 

Pm 

a. ,6,p 
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B1 
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shear modulus.  We have used the same equation that was used earlier: 

Y = oo when a > x 
~~  TH. 

(3) 

Y =■ 0 when a < T^, 
TH 

There have been several theoretical calculations of T  , generally yielding 
TH 

y/20 to M/10.  The exact value is expected to depend on the crystal struc- 

ture.  For f.c.c. metals we have used T  = 0.0606 t taken from the com- TH 

puter calculations of Tyson (1966) based on a Lennard-Jones interatomic 

potential.  For b.c.c. metals we have used TTH = 0.11 , taken from an 

analytical calculation of MacKenzie (19A9). 

2.2 Dislocation Glide 

Below the ideal shear strength, flow by the aonsexvative motion of 

dieloaations  is possible — provided (since we are here concerned with 

polycrystals) an adequate number of independent slip systems are available. 

This motion is almost always obetaale-limited:     it is the interaction of 

mobile dislocations with other dislocations, with solute or precipitates, 

with grain boundaries, or with the lattice itself which determines the 

rate of flow. 

Dislocation glide is responsible for the yielding of most laboratory 

and engineering materials.  The yield-strength of many polycrystalline 

materials does not depend strongly on the rate of straining — a fact which 
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has lead to models for yielding which ignore the effect of strain-rate 

(and of temperature) entirely.  This is misleading:  dislocation glide 

is a kinetic process.  A density p of mobile dislocations, moving through 
m 

a field of obstacles with an average velocity v (determined almost entirely 

by their waiting time at obstacles) produces a strain-rate 

(4) Y - p bv v ' 
m 

At steady-state, p is a function of stress and temperature only.  The 
m 

simplest function, and one broadly consistent with both theory (Argon, 

1970) and experiment is 

Pm = a(rb)2 (5) 

where a is a constant of order unity.  Then 

r   -  f ^2v (6, 

The kinetic problem is to calculate v.  In the most interesting range 

of stress, it is determined by the rate at which a dislocation segment 

is thermally activated through, or round obstacles.  (Above a sufficiently 

high stress — the "mechanical flow stress", T — the segment can over- 

come an average obstacle without any help from thermal energy.  Its velocity 

is then determined by energy-dissipating processes such as phonon drag). 
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In developing rate-equations for v (for reviews see Evans and Rawlings, 

1969; Kocks et al, 1974; de Meester et al, 1973) one Immediately encounters 

a difficulty:  the velocity is always an exponential function of stress, 

but the details of the expression depend on the shape and nature of the 

obstacles, their density, and the statistics of their distribution.  There 

are as many rate-equations as there are obstacle types.  On closer examina- 

tion, obstacle types fall into three broad classes:  discrete, point-like 

obstacles which can be cut or surrounded by a moving dislocation; and 

extended, or diffuse obstacles such as a concentrated solid solution. 

Rate-equations for obstacles of one class differ in details, but have 

certain features in common.  Our approach here has been to select the rate- 

equation which most nearly describes all classes of obstacles, and to treat 

certain of the parameters which appear in it as adjustable, to be matched 

with experiment.  This approach utilizes the most that model-based theory 

has to offer, while still ensuring an accurate description of experimental 

data. 

2.2a Glide limited by discrete obstacles 

If the Gibbs free-energy of activation for the cutting or by-passing 

of an obstacle is G(a), the velocity of a dislocation segment, v, is given 

by (see reviews listed above): 

v = Bbv exp - M£l (7) 

where 3 is a diraensionless constant.  AG(o) depends on the distribution 
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and shape of obstacles.  ("Shape" refers to the distribution of internal 

stress which characterizes an obstacle).  A regular array of box shaped 

obstacles (each one viewed as a circular patch of constant, adverse, 

internal stress) leads to the simple result: 

AG(o) = AF(1 - ^) 
T 

where AF is the total free energy required to overcome the obstacle with- 

out aid from external stress.  T is the stress which reduces AG to zero: 

roughly, the flow stress at 0oK times a factor to account for modulus tem- 

perature dependence. 

But obstacles are seldom box shaped and regularly spaced.  If other 

obstacle shapes are considered, or allowance for a random, rather than a 

regular distribution, all the results can be described In the general 

equation (Kocks et al, 1974): 

AG(a) = &F[1 - (^)P]q (8) 
T 

The quantities, p, q and AF are bounded:  all logical models lead to values 

of: 

0 1 P 1 ! 

1 £ q _< 2. 

The choice of p and q will influence the exact shape of the strain-rate 

contours.  For the case of pure f.c.c. metals, however, the influence is 

not great; it would not appear on maps of the scale presented here.  We 
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have therefore used the box shaped obstacle, with the rate-equation: 

^ = Vxp t-ll(1-f^ (9) 

For the pre-exponentlal. 

a ,T.2 OL 

^0 = b ^  6bV' 
(10) 

we have used Yn = 10 /sec.  Neglecting the pre-exponential stress dependence 

also has little effect on the f.c.c. maps. 

The strain-rate does depend sensitively on AF and T.  The value of 

AF depends on the strength of the obstacles, which may be classed as 

follows: 

Obstacle strength AF Example 

Weak 

Medium 

Strong 

< 0.2yb" 

= 0.5yb" 

> yb3 

Isolated solute atoms; 
Peierls barriers. 

Forest dislocations; 
Radiation damage. 

Dispersions; Most precipitates. 

For pure f.c.c. metals in a work-hardened state, the important 

obstacles are forest dislocations.  Accordingly we have used AF = 0.5yb" 

for all the f.c.c. maps. 
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The value of t is the flow stress in the absence of thermal activation. 

For localized obstacles it is proportional to ■'-r- where H  is the obstacle 

spacing.  The constant of proportionality is complicated, depending on the 

strength of the obstacles and on the statistics of their distributions. 

We have simply used T = ~~  •  This can also be expressed in terms of the 

dislocation density, p, as T = ub/p.  In the maps presented here, we have 

specified it  thereby specifying the degree of work-hardening. 

2.2b Glide limited by lattice friction 

The velocity of a dislocation in most polycrystalline solids  is 

limited by an additional sort of barrier:  that due to its interaction with 

the atomic structure itself. This Peierls resistccnoe  or lattice vesietanae 

reflects the fact that the energy of the dislocation fluctuates with 

position with an amplitude and wavelength dictated by the nature of the 

interatomic or intermolecular bonding, and the lattice parameter.  The 

crystal lattice presents an array of infinitely long straight barriers to 

the motion of the dislocation; it advances by throwing forward (with help 

from the applied stress and thermal energy) kink pairs, which subsequently 

spread apart.  (For a review, see Guyot and Dorn, 1967). 

It is usually the nucleation-rate of kink-pairs which limits disloca- 

tion velocity.  The Gibbs free energy of activation for this event depends 

on the detailed way in which the dislocation energy fluctuates with distance, 
_ 

Examples are:  elements with the diamond cubic structure, most covalent, 
and many ionic compounds, interstitial compounds such as carbides, borldes 
and nitrides, some pure metals (notably those with a b.c.c. structure), 
alloys and intermetallic compounds, and (probably) most organic compounds. 
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and on the applied stress and temperature.  Like those for overcoming 

discrete obstacles, the activation energies for all reasonable forms of 

energy fluctuation, and temperatures, form a family described (as before) 

by: 

AG(o) =AFkU - (V]
q 

T 
P 

where AF. Is the Helmholtz free energy of an Isolated pair of kinks, and 

T is, to a sufficient approximation, the flow stress at 0oK.  (The equa- 
P 

tlon of Guyot and Dorn, used In our earlier report will be recognized as 

the special case of p = 1, q = 2).  Kocks et al (1974) have reviewed 

various calculations for AC and have concluded that an adequate descrip- 

tion of all such barriers is 

AG(O)  = AFM .(°-)3/4]^3 

K      ^ 
T 
P 

(ID 

though it should be emphasized that the result Is not sensitive to small 

changes In exponents.  Combining this with eqs. 6 and 7 leads to an optimum, 

model-based rate-equation for glide limited by a lattice friction: 

• ,a 2     r AFk M   , ,  ,3/4,4/3, 
r = y (r:; exp -{ —— [i - (O/T)  ] ' } 
3  p U        * i        P 

(12) 

To demonstrate that this equation is insensitive to p and q, we have 

calculated constant strain-rate contours for several sets of p and q, as 

* 2 2 
This equation was misprinted as (1 - o  /a)     Instead of (1 - o/a)   . 

Br " 
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Fig.    3)     Contours  for Y = 10     /sec  for various  formulations of  the Pelerls- 

controlled glide equation. 
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shovm (on an expanded scale) In figure 3.  Although these contours do not 

exactly overlap, the shapes are similar, and they could be made to overlap 

well if the parameters Y • AF and T were adjusted appropriately. 

The atomic  structure enters the equations via AF  (typically 0.1 to 

3     ^ / -3-1 
lyb ) and T (typically 10  to 10  y)» which directly reflect the nature 

P 

and strength of the interatomic forces:  these, too, are to be determined 

by fitting equation (12) to experiment.  Note that the pre-exponential 

contains a factor of stress squared, representing the variation of mobile 

dislocation density with stress.  This Is a simplification because it 

neglects the way in which the steady-state kink density varies with stress, 

which is a complicated and only partly resolved problem (Hlrth and Lothe, 

1968; and Kocks et al, 1974).  If experimental data were to permit it, 

the pre-exponential stress power should be treated as adjustable.  Changing . 

this power would not substantially change the maps shown in this paper. 

It would however require changing the value of y  . With the stress-squared 

•     11 
pre-exponential we have used Y ■ 10  . 

P 

It should be noted that the value of T  in the rate-equation will differ 
P 

by some appropriate Taylor factor between single crystal and polycrystalline 

samples.  The proper value should depend on the crystal structure and slip 

systems involved.  Various calculations of the Taylor factor, M, have been 

discussed by Kocks (1970), who finds that M = 2.9+5% is most appropriate 

for b.c.c. metals, converting critical resolved shear stress to tensile 

stress.  Using our conversion to effective shear stress (o ■ a,,7/3), we 
s   11 

have a factor of about 1.67.  This factor can be directly applied to T in 
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equation 12 to find the polycrystalllne rate-equation from experimental 

critical resolved shear stress data. 

2.2c Glide limited by phonon or other drags 

Under conditions of explosive or shock loading, and in certain 

2 
metal-forming operations, the strain-rate can be large (>10 /sec).  Then 

the interaction of a moving dislocation with electrons and phonons can 

limit its velocity.  (Under special conditions —when solute atoms are 

mobile, for example — other drag mechanisms may become Important at 

lower strain-rates).  The strength of the interaction is measured by the 

drag ooeffioient,  B, defined by 

v.2J> (13, 

leading to the rate-equation for purely drag-limited glide: 

For pure f.c.c. metals the important drag is that due to phonons, although 

electron viscosity may become important at very low temperatures.  B has 

-3      -4 2 
values which typically lie between 10  and 10  dyne sec/cm for most 

metals and ionic crystals (see Klahn et al, 1970).  The value of B for 

phonon drag should depend on the phonon density, and should therefore be 

approximately linear with temperature below the Debye temperature: 

R ~ kT 

This la found experimentally for single dislocations (e.g. Jassby and 

Vreeland, 1970).  For the polycrystalllne rate-equation the important 
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parameter is p /B.  Experimentally, this has been found to be constant, 

or even increasing, with temperature (Kumar et al, 1968; Kumar and 

Kumble, 1969).  This indicates that p  increases with temperature suf- 

ficiently to offset the increase in B.  The same studies found that a 

increased linearly with Y» indicating that p remains constant with 
m 

2 
respect to change of a.  (For other types of drag the usual p ^o    may be 

m 

more accurate).  Although there are experimental values available for p /B 
m 

for some metals, we have not yet included this mechanism in our maps; it 

would not appear on most of the maps presented here, which show y ■ 1/sec 

as the maximum strain-rate contour. 

2.2d Superposition of glide-limiting processes 

The rate-equations of this section describe the strain-rate when 

each strengthening mechanism — discrete obstacles or a lattice friction 

— operates alone.  At the lowest level of approximation they can be 

treated as attemativee: 

^Glide = LeaSt 0f {V V (16) 

This is the level of approximation adopted here. It is equivalent to 

assuming that the strongest obstacles control the flow stress, and is 

entirely adequate for our purposes. 

A better approximation is to recognize that, when several strengthening 

mechanisms (drag, obstacles, lattice resistance)operate at once, their 

contributions to the flow stress superimpose in a roughly linear way.  Even 

this is an approximation:  the superposition is seldom truly linear.  The 
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hlghest precision is possible only by modelling the detailed way in which 

a given pair of mechanisms interact (see Evans and Rawlings, 1969; Kocks 

et al, 1974; Frost and Ashby, 1971). 

2.3 Twinning 

Mechanical twinning may be an Important deformation mechanism at low 

temperatures in h.c.p. and b.c.c. metals.  It is less important in f.c.c. 

metals, only occuring at very low temperatures.  Twinning does not appear 

on the maps presented here because no reliable rate-equation is available 

to describe it.  Strictly speaking, twinning is a variety of dislocation 

glide which involves partial dislocations instead of complete dislocations. 

The kinetics of the process, however, are not identical to those of dislo- 

cation glide described in the previous section.  The process involves the 

nucleation of twins which then grow very rapidly.  If twin nucleation is 

the rate-controlling process, the rate-equation could be expressed as a 

stress assisted, thermally activated rate process: 

, AGN(a'T)    •       AFN     a 
Y - Y, exp [ j^—]  -- y^  exp [- ^    (1 - ^^ 

where AG..(ar.T) is the Gibbs free energy to nucleate a twin; AF.T is the free N N 

energy to nucleate a twin without the aid of external stress; y is a 

constant with dimensions of strain-rate which includes the density of avail- 

able nucleation sites and the strain produced per successful nucleation; 

and T is the stress required to nucleate twinning in the absence of ther- 

mal activation.  The temperature dependence of AGN must be included to explain 
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the observation that the twinning stress may decrease with decreasing 

temperature (Boiling and Rlchman, 1965).  The observation of a slight 

Inverse strain-rate dependence of the twinning stress cannot be explained 

by this rate-equation. 

Although we have not used a rate-equation for twinning, we have 

plotted a few experimental points where twinning is observed, particularly 

for f.c.c. metals.  (All the b.c.c. metals discussed here show some twin- 

ning at low temperatures).  The tendency for f.c.c. twinning Increases 

with decreasing stacking fault energy, being a maximum in silver and not 

observed In aluminum.  This is In accordance with a twinning mechanism 

involving partial dislocations. 

2.4  Flow Involving Climb 

Above 0.3 T„ dislocations acquire a new degree of freedom:  they can 
n 

climb  as well as glide.  If a gliding dislocation is held up by discrete 

obstacles, a little climb may release it, allowing it to glide to the next 

set of obstacles where the process is repeated (see, for example, the 

work of Weertman).  The glide step In Its motion is responsible for almost 

all the strain, although its average velocity is determined by the climb 

step.  Mechanisms which are based on this climb-plus-glide sequence we 

refer to as climb-oontrolled creep  (Weertman, 1963). 

The Important feature which distinguishes these mechanisms from those 

of earlier sections is that the rate-controlling process, at an atomic 

level, is the diffusive motion of single iona or vaoonciea  to or from the 

climbing dislocation, rather than the activated glide of the dislocation itself. 
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2.4a Climb-controlled creep;  Lattice and core diffusion 

Above 0.6 !„ climb la generally lattice-diffusion oontrotled.    The 

velocity v at which a dislocation climbs under a local normal stress 0 
^  c n 

is (Hlrth and Lothe, 1968): 

D a fi 
Vc = b-W (17) 

We obtain the basic climb-controlled creep equation by supposing that 

a is proportional to the applied stress o, and the average velocity 

of the dislocation v is proportional to the rate at which it climbs, v . 

Then (combining eqs. 6 and 17) 

where we have approximated ft by b , and incorporated all the constants of 

proportionality into the dimensionless constant, A . 

Some materials obey this equation:  they exhibit power-law creep 

with a power of 3 and a constant A., of about unity, as we would expect 

(see, for example, Stocker and Ashby, 1973).  But they are the exception 

rather than the rule.  It would appear that the local normal stress, a f 

is not necessarily proportional to 0 (implying that dislocations may be 

moving in a cooperative manner) or that the average dislocation velocity 

or mobile density varies in a more complicated way than we assumed here. 

Over a limited range of stress, up to roughly 10 y, experiments are well 

described by a modification of equation 18 (Mukher.iee, Bird and Dorn, 

1969) with an exponent, n, which varies from 3 to about 8: 
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D yb  an 

Present theoretical models for this behavior are unsatisfactory.  None 

can convincingly explain the observed values of n, and the large values of 

* 15 
the dimensionless constant A_ (up to 10 ) strongly suggest that some 

important physical quantity is missing from the equation in its present 

form (Stocker and Ashby, 1973).  But it does  provide a good description 

of experimental observations, and in so far as it is a generalization of 

eq. 18, it has' some basis in a physical model. 

This was the only climb-creep equation incorporated into our earlier 

report. We have found it incapable of explaining certain experimental 

facts.  To do so it is necessary to assume that transport of matter via 

dislocation core diffusion  contributes significantly to the overall diffu- 

sive transport of matter, and — under certain circumstances — becomes 

the dominant transport mechanism.  Robinson and Sherby (1969) have sug- 

gested, rightly, we believe, that this might explain the lower activation 

energy for creep at lower temperatures. We have Incorporated the contri- 

hution of core diffusion  by defining an effective diffusion coefficient 

(following Hart, 1957 and Robinson and Sherby, 1969): 

D,=Df +D f 
eff   v v   c c 

Eq. 19 is usually written in terms of tensile stress and strain-rate. 
Our constant A- (which relates shear stress to shear strain-rate) is 
related to the equivalent constant A which appears in tensile forms of 
thia equation by    = f/T^

11 + ^A  For ^urt^er discussion see section 4. 
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where D is the core diffusion coefficient, and f and f are the frac- 
c v     c 

tions of atom sites associated with each type of diffusion.  The value 

of f is essentially unity.  The value of f is determined by the dislo- 

cation density, p, as f = a p, where a is the cross-sectional area of 
c   c        c 

the dislocation core in which fast diffusion is taking place.  Experimen- 

tally it is only possible to measure the quantity a D .  The rather sparse 

measurements of it have recently been reviewed by Balluffi (1970):  the 

diffusion enhancement varies with dislocation orientation (being perhaps 

10 times larger for edges than for screws)s and with the degree of disso- 

ciation and therefore the arrangement of the dislocations.  Even the 

activation energy is not constant.  In general, D is about equal to D , 

2 
the grain boundary diffusion coefficient, if a is taken as about 5b . 

* 10     2 
By using the common experimental observation that p z    — (a/y) 

b 
(eq. 5), our effective diffusion coefficient becomes: 

10a      „ D 
Deff" V1 +-r ^   r' 

b v 
(20) 

which, when inserted into eq. 19, yields the rate-equation for dislocation 

creep: 

'   A2Deff ^  ,CT/ll,n 
Y4 ^  (^/W) (21) 

Equation 21 is really two rate-equations.  At high temperatures and low 

stresses lattice diffusion is dominant; we have called the resulting field 

The observations of Vandervoort (1970), for example, indicate p * 3/b (a/y) 
for tungsten in t^6 creep regime. 



-28- 

high temperature creep  ("H.T. creep"). At lower temperatures, or higher 

stresses, core diffusion becomes dominant, and the strain-rate varies as 

a     Instead of o ; this field appears on the maps as low temperature 

creep  ("L.T. creep"). 

2.Ab Harper-Porn creep 

There is some experimental evidence that at sufficiently low stresses 

dislocation creep operates with y  linearly proportional to tJ.  The effect 

was first reported by Harper and Dorn (1957) and Harper et al (1958) in 

pure aluminum.  For o/y <^ 5 x 10  they found linear viscous creep at rates 

much higher than the diffusional creep predictions.  Similar behavior has 

recently been found for lead and tin by Mohamed et al (1973).  Some 

theoretical discussion of the mechanism has been summarized by Mohammed 

et al (1972).  The most plausible mechanism is the diffusion-controlled 

climb of dislocations under conditions in which the dislocation density 

does not change with stress.  Mohammed et al (1972) summarize data showing 

4  2 
a constant low dislocation density in the Harper-Dorn range (p ~ 10 /cm ). 

Given this constant density, we may formulate a rate-equation: y  = pbv, 

using eq. 17 for v: 

D yft 
v 
kT 

-(O/Vi) (22) 

This may be expressed as: 

(23) 
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with: 

^"^ . <"> 

We have included Uarper-Dorn creep In our maps for aluminum and lead, 

using the following experimental values for A  : 

Aluminum:  5 x lO"1   (Harper et al, 1958) 

-9 
Lead:  1.2 * 10   (Mohammed et al, 1972). 

These experimental values of A  agree well with our simplified theory if 

4     5  2 
p - 10 — 10 /cm .  We have not used this field for other metals because 

of the lack of experimental verification.  The field only appears when the 

diffusional creep fields are suppressed by the large grain size. 

2.Uc    Power-law breakdown 

-3 
At sufficiently high stresses (usually about 10 y) it is observed 

that the simple power-law (eq. 19) breaks down; the strain-rate exceeds 

that of the simple power-law prediction.  Part of this is explained by 

the low-temperature creep field where the power rises from n to (approxi- 

mately) n + 2.  (For a series of tests within a particular strain-rate 

range, those done at low temperatures will be done at higher stresses). 

There is, however, a more dramatic breakdown at higher stresses, both at 

high temperatures where the L.T. creep field is not predicted to have any 

effect, and at low temperatures at the high stress end of the L.T. creep 
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field.  The process Is evidently a transition from the climb-controlled 

power-law creep to glide-controlled flow which varies exponentially with 

stress.  This glide behavior, however, is not identical to the low tempera- 

ture glide behavior of yield because the diffusion available at elevated 

temperatures allows the dislocation structure to recover as rapidly as 

the deformation proceeds, thereby allowing steady-state deformation to 

be measured.  It should also be noted that in many cases dynamic recry- 

stallization has been shown to be the recover mechanism resulting in a 

steady-state. 

Although there is no firm theoretical model for the power-law break- 

down behavior, there have been various attempts to develop empirical 

equations.  The review by Jonas, Sellars and Tegart (1969) discusses the 

various experimental data.  The exponential dependence of strain-rate 

on stress provides a relationship: 

Y « expCB'a). (25) 

Sellars and Tegart (1966) have proposed an equation to include both 

the low stress power-lav behavior and the high stress exponential behavior: 

• n1 
Y « A(sinh ot'a) (26) 

At low stresses (a'o £ 0.8) this reduces to: 

At high stresses (a'a >^ 1.2) this reduces to: 

•   ,1 
Y « y A exp(n,a,a). 
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Equation 26 has been shown to describe deformation over a wide range of 

stresses (e.g. Wong and Jonas, 1968). 

The temperature dependence for this rate-equation has been Included 

as a simple activation energy: 

i = A[3lnh (a,a)]n'exp(^|)> 

Measured values of the apparent activation energy, Q, typically exceed 

that of self-diffusion, Q .  This is taken as an indication that the 
v 

recovery process is different from that of climb-controlled power-law 

creep.  Some of the difference, however, may be accounted for by considering 

the temperature dependence of the shear modulus, which has greater effect 

when the stress dependence is greater (as in the exponential region).  A 

closer approximation may then be found with: 

e = A[slnh (^p)]11' exp(^). 

In order to have an exact correspondence of this equation with our power- 

law creep (eq. 19) we propose: 

D  Jib 

Yt = A; -££-- [sinh (a'-y]
11 

kT 
(27) 

where 

A' a'" = A,,. 
2       2 

We have, however, found some difficulty with this equation.  The problem 
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stems from the use of only two parameters, n' and a', Co describe three 

quantities:  n' describes the low stress power-law; a prescribes the stress 

level at which the power-law breaks down (a = l/a'); and n'a' describes 

the strength of the exponential stress dependence.  Lacking any physical 

model. It must be considered fortuitous that any set of n' and a" can 

correctly describe the behavior over a wide range of stresses. 

In spite of these reservations, however, we have attempted to fit 

this equation to hot working (power-law breakdown) data for copper and 

aluminum.  Because we retain our fit to power-law creep, the value of n' 

Is prescribed, and the only new adjustable parameter Is a'.  This will 

be discussed further in section 4. 

2.5 Diffuslonal Flow 

A stress can Induce a diffusiondl flux of matter  through, or around 

the surfaces of grains in a polycrystal.  This trans- or circum-granular 

flux leads to strain, provided it is coupled with sliding displacements 

in the plane of the boundaries themselves.  The simple models of the 

process (Nabarro, 1948; Herring, 1950; Coble, 1963; Lif-ihitz, 1963; 

Gibbs, 1965; Raj and Ashby, 1971) assume that it is diffueion-oontrolled. 

They are in substantial agreement in predicting a rate-equation:  if both 

lattice and grain boundary diffusion are permitted, the result is: 

y7 -  ^f D ff (28) 
7   kTd2   eff 

where 

v 
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This was the eauatlon in our earlier report.  Like the equation 

for climb-controlled creep, it is really two equations.  At hiph tempera- 

tures lattice diffueicn  controls the rate; the resulting flow is known 

as Nabarro-Herring creep.  At lower temperatures grain boundary diffusion 

takes over; the flow is then called Coble creep.  Eq. 28 predicts 

Newtonian-viscous flow, at a rate which depends strongly on prain size. 

This equation is an oversimplification; it neglects the kinetics 

involved in detaching vacancies from grain boundary sites and re-attaching 

them again, which may be important under certain conditions (Ashby, 1969, 

1972b).  Lacking a precise model at this time, we have not included this 

in our present maps. 

3.  CONSTRUCTION OF THE MAPS 

Climb-controlled creep (y , . .) and diffusional flow (Y^, .... ,,  ) K   climb Diff flow 

are independent flow mechanisms involving different defects.  At a first 

approximation, their strain-rates add.  Climb creep (y ■..   ,)   and glide 

(Y -i J J ) c'0 noC>  Both precesses Involve the same defect; they describe 
glide 

the different behavior of dislocations under different conditions. As 

the stress is raised, the gliding part of the motion of a dislocation 

becomes more important, and the climbing part less important, until, when 

the boundary between the two fields is reached, climb is not necessary at 

all.  We have solved the problem by treating dislocation creep and glide 

as alternative mechanisms, choosing always the faster one.  This is actually 

a convenient method of dividing the map into two regions, one depicting 
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steady-3tate flow (dislocation creep) and one depicting constant struc- 

ture yield (dislocation glide).  We resort to this because our glide 

equations do not accurately describe steady-state flow.  If we did have 

an accurate steady-state glide equation (containing a temperature dependent 

recovery terra) the treatment as alternative mechanisms would still be the 

most accurate simple method of describing the transition from dislocation 

creep to glide. 

The problem of the superposition of strengthening mechanisms for 

Y ...  (mechanisms 2 and 3) was discussed earlier:  as a first approxi- 
glide 

raation, the slowest one is rate-controlling.  Finally, if the ideal strength 

is exceeded, flow becomes catastrophic (Y,)-  (We have made the special 

case of Harper-Dorn creep (y,-) an alternative mechanism to diffusional flow. 

This is not entirely accurate when both mechanisms give equal contributions, 

but is sufficiently accurate to demonstrate the new mechanism.  The special 

case of the power-law breakdown equation (Y,) is used as alternative to 
o 

climb-controlled creep). 

In summary, the net strain-rate of a polycrystal subject to a stress 

a at a temperature T is: 

\et ^ \  + W + GreateSt of (Vide' \limb) (30) 

Within a field, one contribution to this equation i3 larger than any other. 

(Remember that Y .j , and Y^,, ,,..   each describe the sum of two additive 
'climb    'Diff flow 

contributions). A field boundary  is defined as the set of values of a and 

T at which a switch of dominant mechanism occurs.  The contours of constant 
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etrain-TKite  are obtained by solving eq. 30 for a as a function of T at 

constant Y- 

The actual construction of the maps is done by a computer program 

which searches incrementally over the stress-temperature field to find 

the strain-rate contours and field boundaries.  The main program con- 

tains the search algorithm and the plotting routine. The calculations 

are done primarily within a subroutine that evaluates the rate-equations 

(for a prescribed stress and temperature), forms a sum of the contributions 

to the strain-rate of participating mechanisms, and identified the dominant 

contribution.  This method provides for easy changes in rate-equations or 

their form of interaction.  The method is also amenable to changes in the 

axes of the maps, such as is shown in the log Y versus log (a/)j) plot in Fig.2. 

4.  EXPERIMENTAL CORRELATIONS 

To demonstrate the use of deformation maps we have constructed maps 

for five common f.c.c. metals and six refractory b.c.c. metals, as shown 

in Figs. 4-14.  The data used to construct these maps is given in Table 1. 

The accuracy of the maps reflects that of the experiments.  Different experi- 

menters may report strain-rates that differ by up to two orders of magnitude 

at a given a and T.  It is therefore necessary to make Judgements, as to which 

experiments more accurately reflect the true material behavior.  These Judge- 

ments are largely subjective because of the large number of parameters involved — 

parameters which include purity, testing atmosphere, grain size, thermomechanical 

history, recrystallization effects, and type of tests. 
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We have characterized the behavior of pure materials.  This causes 

some confusion because even small amounts of impurity may dramatically 

change the behavior.  As little as 0.1% impurity has been shown to lower 

the creep rate of Ni by more than an order of magnitude (Dennison et al, 

1966).  The low temperature yield stress of b.c.c. metals is raised 

substantially by even smaller amounts of interstitial impurities. 

One general problem in high temperature measurements is dynamic 

recrystallizations which may result in oscillations in strain-rate at 

constant stress (of an order of magnitude or more) — or oscillations 

in the flow stress at constant strain-rate.  This behavior will cause 

difficulty in defining steady-state behavior.  If recrystallization 

occurs only once during a test, it may be neglected in evaluating steady- 

state behavior.  If the test produces repeated recrystallization, as is 

common in hot torsion tests taken to large strains, the successive waves 

of recrystallization may overlap to produce another type of steady-state 

behavior.  Recrystallization behavior depends dramatically on purity, 

directly implying that the mechanical behavior depends on purity. 

The maps presented in this section are constructed by direct com- 

parison to experimental data.  The experimental data is plotted on the 

same axes, and the parameters are adjusted until the map matches experi- 

ment (within the accuracy of experiment).  Most of the adjustment involves 

the dislocation creep parameters, n and A.  The Peierls yield parameters 

for the b.c.c. metals and in some cases the dislocation core diffusion 

coefficients, have also been adjusted.  On the experimental plots shown 
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here, the numbers for the points represent log10Y.  Points attached by solid 

lines have the same strain-rate.  A dashed line between points indicates a 

series of intermediate experimental points.  Included on the plots are creep, 

tension, compression, torsion and extrusion tests. All are converted to shear 

stress for plotting.  Some confusion is passible for torsion and extrusion data 

because the stress and strain-rate are not constant throughout the specimen; 

they must be derived from the tests according to some mechanical assumption. 

We have plotted shear stress data from torsion as reported by the experimenters. 

The data for single crystals is plotted as critical resolved shear stress 

whenever possible, and with the standard conversion from tensile to shear stress 

otherwise.  To compare it with the polycrystal data shown on the same map, the 

reader must multiply the single-crystal stresses by the Taylor factor:  3.06//3 

for f.c.c. and 2.9//3 for b.c.c. In arriving at the optimized data of Table 1, 

single-crystal data was treated in this way. 

4.1 F.C.C. metals 

For the common f.c.c. metals, there is extensive data on the low tempera- 

ture yield and work-hardening behavior.  The yield stress depends on the 

obstacle density (or dislocation density) and will therefore be different for 

different states of annealing and work-hardening.  Direct comparison with 

experiment is therefore inappropriate.  Unless otherwise noted, we have used 

10  2 
a dislocation density of p = 6.25 x 10 /cm  (or an obstacle spacing of 

Jl = A x 10 cm) for the f.c.c. maps.  This represents a well work-hardened 

state, though it is not the maximum density observable and is therefore not a 

3 
saturation or steady-state density.  We have used AF = 0.5yb for the following 

maps, which is slightly greater than the expected proper value for forest dis- 

location cutting; the effect of this difference is very small on the scale of 

the following maps. 
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The elastic moduli and volume diffusion coefficients of f.c.c. metals 

have been well studied.  For the shear modulus, u, we have used the geo- 

metric mean of the two shear moduli of a cubic crystal: 

u ;/c, - <cu - ^ 
44      2 

This is the value that enters the anisotropic calculation of the elastic 

energy of a y <110> screw dislocation in the f.c.c. structure.  We have 

incorporated a linear temperature dependence of the modulus — a reasonably 

accurate approximation. We have chosen volume diffusion coefficients 

which are generally intermediate among the many reported values. Modulus 

and diffusion coefficients are listed in Table 1. 

The following is a brief summary of the experimental data used 

for each map: 

NICKEL  (Figure 4) 

The high temperature creep parameters are based on Weertman and 

Shahinian (1956) who reported creep tests on 99.75% Ni, with n = 4.6 

in the high temperature region.  It has been shown, however, (Dennison et al, 

1966) that small amounts of impurites (-0.1%) may lower the creep rate of 

nickel by up to an order of magnitude.  We have therefore used an A value 

(3.0 x 10 ) almost an order of magnitude greater than would be derived 

from Weertman and Shahinian.  This value provides a much closer correspon- 

dence to the peak flow stress in torsion data of Luton and Sellars (1969), 

and other various data near the H.T. creep—L.T. creep boundary.  In 
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general, our A value for nickel is only approximate. 

For low temperature creep, we have used the core diffusion coefficient 

given by Canon and Stark (1969) for edge dislocations in a symmetric tilt 

boundary.  The activation energy for this (Q = 40.6 kcal/mole) matches the 

findings of Norman and Duran (1970) in the L.T. creep region.  In addition, 

Norman and Duran find n = 7.0, which they believe verifies the low tempera- 

ture creep field. Their strain-rates accurately match our numerical pre- 

diction (using A = 3.0 x io ).  Weertman and Shahinian also find a low 

temperature increase in the stress exponent, although their strain-rates 

are lower.  We have not chosen a power-law breakdown parameter for nickel. 

COPPER (Figure 5) 

The primary references for the high temperature creep of copper are 

Feltham and Meakin (1959) and Barrett and Sherby (1964).  For the low 

temperature creep field we have used a core diffusion activation energy 

of 28.0 kcal/mole.  This is chosen to match the activation energy for 

low temperature creep found by Barrett and Sherby (1964). We have found 

no experimental determination of core or boundary diffusion coefficients. 

We have used the power-law breakdown equation for one map, using 

2 
a1 = 7.94 x io .  This is in general agreement with the dynamic compression 

data of Alder and Phillips (1954) and Samanta (1969,1971). 

SILVER (Figure 6) 

There has been less work on the creep of silver than on the other common 

f.c.c. metals.  The high temperature creep parameters are based on 

Leverant et al, (1966).  For the low temperature creep field, the average 

dislocation core diffusion coefficient given by Turnbull and Hoffman (1954) 
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has been used.  Using these values, and considering dlffuslonal creep, 

we have obtained good agreement with the data of Carreker and Guard (1955) 

and Shroder et al (1968). 

ALUMINUM (Figure 7) 

The lilgh cemperature creep parameters for aluminum are based on 

Weertman (1956) and Servl and Grant (1951).  At high temperatures, these 

studies show an activation energy in agreement with the diffusion coeffi- 

cient of Lundy and Murdock (1962):  Q = 3A.0 kcal/mole.  For low tempera- 

ture creep, the dislocation core diffusion coefficient cited by Balluffi 

(1970):  Q » 19.6 kcal/mole, which provides good agreement with low 

temperature creep experiments, has been used.  The Harpcr-Dorn creep field 

Is based on Harper et al (1958).  It appears on the map for d =» 1mm, but 

is suppressed by dlffuslonal creep at d = 10um. 

The power-law breakdown region of aluminum has been extensively 

studied; experimental data has been correlated according to a sinh equation 

by Wong and Jonas (1968).  Data for commercial purity aluminum —dynamic 

compression (Alder and Phillips, 195^; Sflmanta, 1969, 1971 and Hockett, 

1967) and for extrusion (Wong and Jonas, 1968) — show much lower strain- 

rates than data for high purity aluminum — torsion (Sellars and Tegart, 

1966) and for extrapolation of creep (Servl and Grant, 1951).  Both seta 

of data cannot be matched by the same power-law breakdown parameter.  The 

3 
value used for both maps (a* = 1 * 10 ) provides an intermediate approxima- 

tion.  The field appears here as a general demonstration, not as an exact 

rc.priisentatinn of experimi;nt. 
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LEAD (Figure 8) 

Our high temperature creep parameters are based on Mohamed et al 

a 
(1973):  n = 5.0, A = 2.5 * 10 .  These differ from those that could be 

derived from the single crystal creep experiments of Weertman (1960), 

which show a slightly lower n at high temperatures.  We have used a 

diffusion activation energy of 26.1 kcal/mole (Resing and Nachtrieb, 1961) 

which is higher than the value found by Mohamed et al and lower than the 

value derived from Weertman. 

Low temperature creep behavior is indicated by a number of studies. 

Weertman's low temperature data shows a higher stress exponent and a 

lower activation energy.  Data of Feltham (1956) shows an apparent 

Q = 22 kcal/mole, with n ^ 7.  Room temperature data of Gifkins (1952, 

1959) and Nichols and McCormick (1970) show n = 8.  The dislocation core 

diffusion coefficient is taken to match the boundary diffusion data of 

Okkerse (1954):  Q = 15.6 kcal/mole.  The Harper-Dom creep field is based 
c 

on Mohamed et al (1973).  It appears for d = Imm, but not for d = lOym. 

4.2 B.C.C. Metals 

We have prepared maps for the refractory metals in groups Va and 

Via;  V, Cr, Nb, Mo, Ta, and W.  These maps use the same mechanism equation 

as the f.c.c. maps (without Harper-Dom creep or power-law breakdown) plus 

a Peierls barrier controlled glide equation. 

For these b.c.c. metals it is important to specify the choice of 

shear modulus and its temperature dependence.  Some of these metals show 

fairly large anisotropy, so different averages of the single crystal elastic 
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Fig. 5c)  Pure copper experimental data. 
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Fig. 6b)  Pure silver experimental data. 
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Fig. 7a)  Pure aluminum of grain size lOym, including the power-law breakdown 

region. 
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Fig. 8a)  Pure lead of grain size lOyra; Harper-Dorn creep does not appear. 
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Fig. 8b)  Pure lead of grain size Imra, showing Harper-Dorn creep which has 

supplanted diffusional flow. 
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constants will have different values. We have used room temperature 

modulus values that are derived from the anisotropic calculation of the 

energy of a 1/2 <111> screw dislocation (see Hirth and Lothe, 1968, 

p.435).  These values are listed in Table I.  For the temperature depen- 

dence we have made estimates from the temperature dependence of other 

single crystal or polycrystal moduli.  In all cases we have used the 

approximation of a linear temperature dependence. This is fairly 

accurate for all these metals except niobium which shows anomalous 

behavior (see Armstrong, et al, 1966). 

the volume self-diffusion for these metals is fairly well known. 

For some there is evidence that the activation energy increases with 

temperature.  In particular, we have used a dual expression for the volume 

diffusion coefficient of vanadium, as given in Table 1.  Similar behavior 

has been demonstrated for tantalum (Pawel and Lundy, 1965) but can be 

well approximated by one simple Arrhenlus relationship. 

We have found complete data for grain boundary and dislocation core 

self-diffusion only for tungsten.  For chromium, an activation energy for 

core diffusion has been reported.  All other core and boundary diffusion 

coefficients have been estimated using the approach, Q ~ Q,, ~   v. c  B  T 
For all the b.c.c. metals the parameters we have used for Peierls 

barrier controlled yielding are only approximate. We have found our rate- 

equation to be a good but not perfect match to experiment.  The parameters 

AF. and T would, however, be different were a different form of AG used, 
k     p 
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In any approximate fit to experimental data the chosen values of 

AF. , T and Y are all Interdependent; changing any one slightly would 

be acceptable, but would require changing the others. 

It Is difficult to find y experimentally unless the flow stress 

is known for different strain-rates.  From the Briggs and Campbell (1972) 

•     11 
data on molybdenum, we have derived Y = 10  /sec and have used this for 

all the b.c.c. metals.  This Is the appropriate value for equation 12 

(with stress-squared pre-exponentlal) and would differ for other pre- 

exponential stress dependencies. 

Given the Y value, the AF, value can easily be found from the 
p      '      k 

temperature dependence of the flow stress.  The yield stress of b.c.c. 

metals is substantially lowered by Increased purity.  In fact, there has 

been debate as to whether the Peierls stress results from an intrinsic 

lattice resistance or from small concentrations of interstitial Impurities. 

The question does not concern us here, except that it must be recognized 

that the yield parameters refer to a particular level of purity. 

Much of the recent work on b.c.c. metals has measured the single 

crystal critical resolved shear stress.  This is related to the poly- 

crystalline tensile flow stress by an appropriate Taylor factor, ~1.67, 

as discussed In section 2.2b.  On our experimental plots it can be seen 

that polycrystalllne data and single crystal critical resolved shear stress 

data (for comparable purities) differ by about this factor, at all tempera- 

tures.  The Taylor factor can then be Included in the value of x ; the 
P 
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T values in Table 1 are for polycrystalline yield. As discussed in 

section 2.2d, we have used the approximation that Peierls-controlled 

and obstacle-controlled glide are alternative mechanisms: the slowest 

strain-rate is controlling. This results in the sharp comer in the 

strain-rate contours. A more complete model of the mechanism inter- 

action would smooth the transition, as shown for the plotted experiments. 

We have arbitrarily chosen an obstacle spacing of £ = 2 * 10 cm (or a 

9  2 
dislocation density of p = 2.5 * 10 /cm ).  This value is lower than that 

used for f.c.c. maps, and represents a lower state of work-hardening. 

It is not necessarily that of the samples used for the plotted yield 

stress experiments. 

Let us briefly review the experimental data for each metal. 

VANADIUM (Figure 9) 

The dislocation creep parameters are based on Wheeler et al (1971). 

As mentioned above, the activation energy for volume diffusion decreased 

from -94 kcal/mole at above 1350oC to ~74 below.  Wheeler et al find 

that the activation for creep also decreased (from 113 to 94 to 76 kcal/mole) 

with decreasing temperature, though the decrease occurs at a lower tempera- 

ture. At their lowest temperatures, the activation energy drops to 

54 kcal/mole, which they ascribe to core diffusion. The stress exponent, 

n, increases from 5 at high temperatures to ~8 at low temperatures which 

is also in accord with the low temperature creep behavior. 
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The Pelerls stress parameters are derived from the high purity 

polycrystalline data of Wang and Bainbrldge (1972), which is probably 

the highest purity reported.  This data agrees with their single crystal 

data and with the single crystal data of Mitchell et al (1970) when 

the Taylor factor conversion Is included. 

CHROMIUM  (Figure 10) 

The dislocation creep parameters for chromium are derived from 

Stephens and Klopp (1972) who used high purity iodide chromium.  Their 

data at 1316° and 1149,,C shows a stress exponent of n - 4.5; data at 

816° and 9820C shows n = 6.5.  The lower temperature data, however, 

shows no tendency toward a lower activation energy.  There is, therefore, 

no conclusive evidence for (or against) a low temperature creep field 

in chromium.  The yield behavior of chromium is based on the Marcinkowski 

and Lipsitt (1962) data for polycrystals.  We have not found any single 

crystal studies. 

NIOBIUM  (Figure 11) 

The elastic constants of niobium have an anomalous temperature 

dependence (Armstrong et al, 1966).  Because of this, we have neglected 

the temperature dependence of the modulus.  We have not found any exten- 

sive creep studies at very high temperatures.  We have used creep para- 

meters based on Brinson and Argent (1962-1963) which are in agreement 

with Stoop and Shahinlan (1966) but show greater strain-rate than 

Abramyon et al (1969).  The creep field of niobium is the least accurate 
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among the metals discussed In this paper. The low temperature yield 

behavior of niobium has been extensively studied for both polycrystals 

and single crystals. We have used yield parameters based on Brlggs 

and Campbell (1972), which also agree veil with earlier studies. 

MOLYBDENUM (Figure 12) 

The high temperature creep of molybdenum has been well studied. We 

have based our high temperature creep parameters on data of Conrad and 

Flagella (1968), which Is more than an order of magnitude faster In creep 

rate than Green, Smith and Olson (1939). The high temperature stress 

exponent is n = 4.85.  There are several studies which generally support 

a low temperature creep field. Carvalhinos and Argent (1967), Pugh (1955) 

and Semchyshen and Barr (1955) all show n = 6 - 8 for T -  0.4-0.53 Tu, 

and a lower activation energy than Is found for volume diffusion.  For 

the low temperature yield parameters, we have used Brlggs and Campbell 

(1972). This data is not the lowest yield stress data available and 

therefore does not represent the highest purity.  Lawley et al (1962-63) 

have found that the polycrystalline yield stress can be substantially 

lowered (nearly a factor of 2.0) by further zone refining, although the 

change in purity cannot be detected. 

TANTALUM  (Figure 13) 

The high temperature creep parameters for tantalum are taken from 

W.V. Green (1965).  His steady-state data does show an activation energy 

increasing with temperature, as pointed out by J.E. Flinn and E.R. Gilbert 
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(1966), but this may be explained by the fact that the highest temperature 

tests were done at higher temperature than the annealing temperature.  The 

Indicated stress exponent Is n = 4.2.  There Is some Indication of low 

temperature creep behavior.  The data of Schmidt et al (1960) at 1200° and 

1000eC shows n » 6.  The yield parameters for tantalum are based on data 

of Wessel as cited by Bechtold, Wessel and France (1961), which Is in good 

agreement with the single crystal data of Mitchell and Spltzig (1965), 

adjusted by the appropriate Taylor factor. 

TUNGSTEN  (Figure 14) 

The high temperature creep of tungsten has been reviewed by Robinson 

and Sherby (1969), who demonstrated that most of the available data can 

be divided into high temperature creep above about 2000oC and low tempera- 

ture creep below about 2000oC.  The high temperature data Is that of 

Flagella (1967) —■ for wrought arc-cast tungsten — and of King and Sell 

(1963).  This data shows faster creep rates than that of Green (1959) 

and Flagella (1967) for powder metallurgy tungsten.  The low temperature 

creep region is represented by the data of Gilbert, Fllnn and Yaggee 

(1965) which shows n - 7 between 1300° and 1900oC with an apparent activa- 

tion energy of about 90 kcal/mole, although it is nearly an order of 

magnitude slower than the Flagella data in the overlapping temperature 

range.  This general behavior is also indicated by other papers.  The 

low temperature yield parameters for tungsten are based on the polycry- 

stalline yield data of Raffo (1969).  This data is in general agreement 

with single crystal critical resolved shear stress data of Koo (1963) and 

Argon and Maloof (1966). 
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Fig. 9a)  Vanadium of grain size O.lmm. 
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Fig. 9b)  Vanadium experimental data. 



-66- 

TEMPERATURE  0C 

800 1200 1600 

en 
CO 
UJ 
CL 
I- 
cn 

cc 
< 
UJ 
X 
CO 

Q 
UJ 
N 

O 

0.2 0.4 0.6 0.8 

HOMOLOGOUS   TEMPERATURE   T/TM 

Fig.   10a)     Chromium of  grain size O.lmra. 
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5.  DISCUSSION 

Deformation mechanism maps have several Important uses.  First, 

they provide an excellent means by which the complicated relations 

between different deformation mechanisms can be presented and visualized. 

This depends, of course, on the accuracy with which the maps describe 

plastic behavior, which is, in turn, governed by the limitations imposed 

by the simplifications and assumptions that are required.  Second, they 

provide a graphic means for the direct and easy comparison of experiment 

with theory, of different experiments one with another, and of the 

behavior of different materials or groups of materials.  Finally, the 

maps provide a qualitative method for the selection of a material for 

engineering applications, the prediction of the mechanisms by which the 

sample or structure deforms, and the prediction of the effects of 

strengthening mechanisms.  The following discussion will treat each of 

these points in turn. 

5.1 General Accuracy 

Within the limitations of steady-state or constant-structure formu- 

lations, the deformation maps in the major mechanism fields are as accurate 

as can be determined from available experimental data.  There remain, how- 

ever, several regions and mechanisms which are not presently well understood. 

Figure 15 shows qualitatively where some of these lie on a map for nickel. 

Some of the difficulties Involved in describing twinning and the power-law 

(high stress) breakdown region have been discussed in section 2.  The region 
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Fig.  15)    Map  for nickel with a  grain  size lOOym,   showing the approximate  regions 

in which twinning,   grain-boundary  sliding accommodated by power-law creep, 

the high stress power-law breakdown,   and dynamic  recrystallization occur. 
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of dynamic recrystallizatlon Is difficult Co delineate because the ease 

of recrystallizatlon depends on the purity.  This may in fact account 

for much of the reported dependence on purity in the dislocation creep 

fields.  Although recrystallizatlon may provide an additional means of 

recovery to dislocations, we are uncertain whether the kinetics would be 

radically changed.  The behavior may be that of repeated primary creep, 

similar to, but faster than, steady-state dislocation creep. The region 

of grain boundary sliding accommodated by plastic flow (dislocation creep 

within the grains) is definitely an expected coupled mechanism. We do 

not yet have a sufficiently accurate model to Include on the maps, but the 

effect on the strain-rate should not be great. 

The use of steady-state flow and constant-structure yield formulations 

is the major limitation on the maps in presenting a complete view of plastic 

deformation behavior.  Steady-state flow is an accurate representation of 

diffuslonal creep (without grain growth or recrystallizatlon). For dis- 

location creep, however, the steady-state formulation neglects primary and 

tertiary creep entirely.  It also neglects logarithmic creep (which may be 

considered an extended primary creep).  It would be possible to Include 

primary creep by presenting a series of maps showing the cumulative strain 

at various times.  The added dimension of time greatly increases the com- 

plexity. The parameters describing primary creep are known for only a few 

circumstances.  In addition, the primary creep behavior depends on the initial 

dislocation structure; different studies will generally use material with 

different initial structures (different degrees of annealing). Within one 
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study, the Initial structure may differ at different test temperatures 

because of recovery.  For these reasons our maps are limited to the 

well known steady-state creep behavior. 

Tertiary creep would also be difficult to characterize.  The behavior 

of creep rupture from void growth and coalescence occurs in tension, but 

not in compression, and therefore does not represent general plastic 

behavior.  The onset of tertiary creep also depends on void nucleation 

and growth, which would require the specification of additional para- 

meters (e.g. the number and size of grain boundary second phase inclusions). 

Although we have neglected tertiary creep, it may often provide a problem 

in comparing experiments, A tensile creep experiment that shows no pro- 

longed steady-state behavior may represent tertiary behavior starting 

before primary creep has ended.  In this case, the reported minimum strain- 

rate may not be steady-state strain-rate. 

For the dislocation glide field, the constant structure yield formu- 

lation does not allow a description of work-hardening behavior.  Such 

behavior could be described by a series of maps showing the stress reached 

at various times for various constant strain-rates.  This description 

differs from the one most appropriate for primary creep, providing further 

complications.  We have, therefore, not included work-hardening. 

5.2 Material Comparisons 

Deformation mechanism maps provide a convenient method of making 

various comparisons:  comparing experiment to theory, comparing materials 
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within a group of similar crystal structure and bonding, or comparing 

different groups of materials.  The comparative use of various types of 

plots is certainly not original to this paper.  The contribution of our 

approach is that experiment can easily be compared to a number of possible 

mechanisms if the data is specifically plotted according to its stress- 

temperature location. The important case for this study is within the 

dislocation creep field. 

Many studies (though not all) have derived empirical creep parameters 

with little regard for the stress-temperature location of the data. With 

our method of plotting, we have found a generally consistent variation of 

parameters with stress and temperature that is consistent with the low/high 

temperature creep transition described in section 2.4a.  In a similar 

manner, we expect that the power-law breakdown region will be described 

differently at high and low temperatures.  Our experimental comparisons 

have also been useful in providing an understanding of how accurate our 

knowledge of material behavior actually is.  Once we have formulated 

material behavior into accurate maps, we may make informative comparisons 

between materials within a group of similar crystal structure and bonding 

or between such groups.  All the maps shown in section 4 are for two very 

similar groups:  pure f.c.c. and pure b.c.c. metals.  The mechanical 

properties of other groups, such as alkali halides, metal oxides, and 

carbides, is generally less well known.  Although we may expect the same 

basic deformation mechanisms to operate, direct comparison is beyond the 

scope of this paper.  From the maps we have presented, however, we may 

make the following informative conclusions. 
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5.2a F.C.C. comparisons 

All maps shown thus far have a linear temperature scale normalized 

with respect to the melting temperature, and a logarithmic stress scale 

normalized with respect to the shear modulus. This permits a logical 

method of comparison.  The f.c.c. maps should all be identical to the 

degree that the mechanical behavior can be described by crystal struc- 

ture, the melting temperature and the shear modulus.  This comparison can 

be demonstrated directly. Figure 16 shows the strain-rate contour for 

*    -8 
Y =10 /sec and grain size d - lOOym for the f.c.c. metals on un-normallzed 

temperature and stress scales. Fig. 17 shows the same contours plotted 

on normalized scales. (These plots do not Include Harper-Dorn creep or 

power-law breakdown). The great divergence Is reduced but not eliminated. 

In Fig. 18 we add three further normalizations.  Because both 

dislocation creep and dlffuslonal creep depend on self-diffusion, we com- 

pare strain-rate contours that are normalized with respect to melting point 

diffusivity.  In dimensionless form, we use 

.  10"14D (TM) 
Y =     v M 

b2 

The logical dimensionless normalization for the grain size is the Burgers' 

vector; we use d = 4 * 10 b. For dislocation glide our important input 

parameter is the dislocation density (or obstacle spacing).  This may 

also be normalized with respect to the Burgers' vector as: 

2.5 x io"5 
p = — 

b2 



-85- 

10' 

TEMPERATURE   "CENTIGRADE 

500 1000 1500 

10' 

E 

iio 
CO 
en 
UJ 
cr 
i- 
co 

< 
UJ 
X 
CO 

10 

10 
,-2 

—1  —h -H   1 ^  
d = 100/tm 

T\\ 

\ 

y = IO"8/S( ec 

\ 

\ 

\ 

\ 
\^Ni 

\ 
-■ 

^ X-c j         \^ 

\ 
Ag  \ A \ 

\- \ 
\ \ 

Pb 

\ \ 
\ 

\ \ 

\ 

\ 

\ 

\ \ N 

10 
10 

10" 

I0C 

10' 

10 

200 400 600 800 1000        1200        1400 

TEMPERATURE    KELVIN 

1600 
I0W 

1800       2000 

E 
u 
v. 
Z 
>■ 

Q 

(S) 
(O 
UJ 
CC 
»- 
m 

cr 
< u 
X 

,-8 
Fig. 16)  Contours of Y => 10 /sec for five f.c.c. metals on unnormalized stress 

and temperature scales; grain size = lOOpra. 



-86- 

10 

id2 

CO 
CO 
UJ 
oc 
»- 
en 

< 
UJ 
X 
</) 

a 
UJ 
N 

o 

i53 

10 

iow 

io6 

d-IOO/im 

X = l« D"8/sec 

^ 

W- 

' 

^ 

^ 

^ ^s; N, 

A^X v     \X N 

. \ 

Vcu 

\ 
.2    .3    .4    .5    .6    .7 

HOMOLOGOUS TEMPERATURE T/TM 

.8 1.0 

•    -8 
Fig. 17)  Contours of Y = 10 /sec for five f.c.c. metals on the usual normalized 

stress and temperature scales; grain size = lOOym. 



-87- 

10 

V) 
(ft 
LLI 
cr 
I- 
(/) 

< 
i 
en 

o u 
M 

o 

10 

10' 

10 

10' 

10 
-6 

1 
d = 4 x 105 b 

y= 10',4DTM/b2 

^ 

P* 2.5 x 

b2 

lO"5 

^ 

Pb 4. 
^ 

^ 

^ 

At'' 
rAg 

ik. V.       > 

\ 

.2 .3 .4 .5 .6 .7 

HOMOLOGOUS    TEMPERATURE    T/TM 

1.0 

Fig. 18)  Contours of y =■ lO"1^ /b2 for five f.c.c. metals on the usual 

normalized scales, with the furteer normalizations of grain 

size = A x io b and p = 2.5 x 10"5/b2. 



-88- 

Using these normalizations, the contours for the dislocation glide region 

coincide:  this is a direct result of our glide rate-equations.  At the 

highest temperature in the Nabarro-Herring creep region, the contours are 

also closely bunched.  The remaining divergence is in the power-law creep 

region. 

It has been shown that the normalized high temperature creep strength 

of the f.c.c. metals increases as the stacking-fault energy decreases 

(see, for instance, Barrett and Sherby, 1965).  This is exactly the effect 

shown in this figure:  the order of contours (Al, Ni, Pb, Cu, Ag) matches 

the order of the stacking-fault energies.  It may be added that this 

divergence of normalized contours is substantially greater than the 

experimental error involved in constructing the maps, and therefore repre- 

sents a real material property. 

Although the stacking-fault energy effect is well demonstrated, we 

do not believe that the accuracy of the maps justifies an independent deter- 

mination of the exact form of this dependence.  We can, however, point out 

that the stress exponent, n, does not correlate with the stacking-fault 

energy as has been suggested (see Bird et al, 1969). n is roughly 

adjustable between 4 and 5 for all pure f.c.c. metals, and will differ 

between different studies of each metal. 

There are only a limited number of ways that we would expect normal- 

ized f.c.c. metals to differ.  The primary one is, of course, the stacking- 

fault energy. The second difference is the dislocation core diffusion 

coefficient (as compared to volume diffusion).  This should be related 

to stacking-fault energy through spacing of partials.  The effect should 
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dominate In the low temperature creep field.  The limited measurements 

of core diffusion do not really allow the effect to be investigated. 

Other properties, such as the degree of elastic anisotropy, probably 

have little effect. 

5.2b B.C.C. comparisons 

Figures 19 and 20 show comparative plots for the b.c.c. metals, 

similar to those shown for the f.c.c. metals.  In this case the divergence 

found in the unnormallzed plot (Fig. 19) is substantially eliminated in 

the stress and temperature normalized plot (Fig. 20).  In the Peierls 

barrier-controlled yield region, there Is a distinct difference between 

the group Va metals (V, Nb and Ta) and the VIb metals (Cr, Mo and W); 

the former show higher normalized Peierls stresses, and the lower values of 

AF. (hence the steeper temperature dependence).  This behavior has been 

pointed out previously by Bechtold et al (1960).  In the creep region the 

correlation is very close for Cr, Mo and W: closer than the experimental 

error involved.  The deviations of Ta, Nb and V are noticeable, but not 

great.  Because the divergence in Fig. 20 is small (comparable to experi- 

mental error), we would not expect further normalizations to provide any 

better correspondence.  This is especially true because the melting point 

diffuslvitles are approximately equal and not precisely known. 

5.3 Design Applications 

Deformation mechanism maps provide a means of demonstrating the 

effects of various changes in materials.  This may be helpful In choosing 
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materlals for applications, even chough the maps are not sufficiently 

accurate for engineering design.  In this regard it Is useful to have 

an idea of the areas of a map that are accessible to experiment, and 

the areas to which materials are exposed in practice.  Fig. 21 shows 

these areas on a map for nickel, with shaded regions showing the actual 

scope of published creep and hot torsion tests.  Also shown are regions 

of conventional cold and hot-working processes, the region in which a 

material is used for structural applications (y < 1% per year), and, as 

a lower limit of interest, the region encountered in slow geophysical 

•    -14 
deformation processes (y > 10  /sec).  This figure Illustrates the impor- 

tant point that the areas of stress/temperature space which are most studied 

by laboratory experiments are often those which are least encountered in 

the forming, or In the applications, of materials.  The mechanisms Iden- 

tified in the lab tests may not be those that are dominant in use.  For 

this reason, our method of displaying the combined effects of many mechanisms 

Is a useful one.  Among the many desired design properties of materials, 

the maps describe only the resistance to yield or steady-state flow.  This 

property is generally at its worst in pure metals (all maps of section A) 

and various strengthening mechanisms are incorporated into almost all 

structural materials.  To be useful, the strengthening mechanism must be 

effective against the deformation mechanism that dominates at the stress 

and temperature of service.  For these purposes, the different deformation 

mechanisms are dislocation glide, dislocation creep, and diffusional creep. 

Strengthening mechanisms for one may have no effect on the others.  For 
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example, the simplest means of strengthening against diffusional flow Is 

to Increase the grain size.  This will have little effect on the steady- 

state dislocation creep, and will probably lower the low temperature 

dislocation glide flow stress.  Similarly, increasing the dislocation 

density by work-hardening strengthens against dislocation glide, but will 

have little effect on high temperature creep because the dislocations will 

anneal out. 

A full presentation of the different strengthening mechanisms avail- 

able is beyond the scope of this paper. We have, however, prepared one 

simple example.  Figure 22 shows a map for a recrystallized Ni — 1 vol% 

Th02 alloy, based on the creep data of Wilcox and Clauer (1969).  The ThO- 

is a stable dispersion of average particle diameter 2.2 x 10  cm, and a 

mean planar center to center spacing 2.505 * 10 cm.  (Grain size 0.1mm is 

assumed).  Although we do not have an accurate theory for climb-controlled 

creep in such a structure, we can determine experimental parameters for 

our dislocation creep standard equation:  n = 8.0, A = 5.0 x 10  . 

Diffusion coefficients, modulus, etc are assumed to be the same as for 

pure nickel.  For the dislocation glide field, we have used the initial 

Orowan stress based on the particle spacing.  This is lower than the yield 

stress for work-hardened pure nickel, but the alloy would work-harden very 

quickly when deformed.  Diffusional creep is assumed to be the same as 

for pure nickel. 

As can be seen by coraparlsion with Fig. Ac, the dispersion greatly 

inhibits dislocation creep and contracts the field.  At this assumed 
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Fig. 22)  Map for a nickel — 1.0 vol% ThO- alloy, recrystallized to a grain 

size of about O.ltrac.  The dislocation creep field is based on the 

plotted data of Wilcox and Clauer (1969).  The dislocation glide 

field is based on the Orowan yield stress for a mean planar particle 

spacing of 2.5 * 10 cm. 
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grain size, diffusional creep now becomes an important mechanism to 

consider, since it becomes dominant at stresses slightly lower than the 

plotted data.  We can clearly see that extrapolation of the creep data 

to low stress at high temperatures would not be adequate for design purposes. 

6.  SUMMARY 

1) Deformation maps can be constructed which show fields of 

stress and temperature in which several different deformation mechanisms 

are dominant.  Strain-rate contours on these maps provide a representation 

of the stress—temperature—strain-rate relationship. 

2) We have constructed such maps for five f.c.c. and six b.c.c. 

metals, arriving at an optimized set of input data by careful comparison 

with a mass of experimental data.  By this procedure, maps can be constructed 

which depict farily accurately the steady-state mechanical behavior of the 

metal in question. 

3) Maps for pure metals of similar structure (on normalized stress 

and temperature scales) are strikingly similar.  Further normalizations can 

be used to make them almost superimpose.  For f.c.c. metals, the residual 

differences are predominantly due to the stacking-fault energy.  For the 

b.c.c. metals studied, the residual differences are of the general order 

of magnitude of the experimental uncertainty. 

4) Maps for engineering materials can be constructed.  As an example, 

one. for a recrystallized Ni — 1 vol% ThO_ alloy is presented in the text. 

The maps are useful for design under certain conditions, particularly when 
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they Indicate that a change of mechanism may occur between the region 

of experimental observation and the region of design application. 
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TABLE 1:  MATERIAL PARAMETERS 

Metal 

Q 
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b 
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10L1dynea 
C            2       ' 

cm do'4/ 

• 

•K) 

D      + 

(en /sec) 

*: 

<& 

t 

(cni3/aec) 
kcal 
mole 
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^214.0' 

f73.65"0) 

l94.14' 
5 xlO"8   (7) 50.     < 
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Ta 1.80 2.86 3271 6.12   "a> 1.35(27) 0.124C28) 98.7   (28> 5,72X10-8   <7) 67       ( 

U 1.59 2.74 3683 16.0     (24> 1.04<27) 5.6     <29> 140.     (29> 3.33X10-7   W 92.0   C 30) 

1                                                                                                                                                                                                                                                     1 

Ccm /ace) 
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A^ 
(31) 

D 

(^ 

TP    (31) 
o 
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2    ' 
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t 
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Al 7X10-17   (I 4) 19.e (14) 3.4xl06 4.4 4X10-6 
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V io'15 50. 
(7) 8 
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Cr 
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W 7.854x10" 14 
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1.1X108 4.7 10.41 17.0 2X10"5 

*    U-W0U- (1-300)^1 

+    Dv - Do    exp(- ^1   DB - D       exp   (- £ ;   D^ D      exp  (- ^f) 
V B c 

+t These values are given  for  the  tensile stresB-Censlle strain-rate.     For  the  shear equation, ye 
use: ,   , 

A2 -  (/3)n + \ 

This value  la used  for  Fig,   4;   a slightly smaller  value  ia  used  for  Figs.   1,  15 and  21. 
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